Life history and biology of Lema semifulva Jac.

(b) Association with other Criocerinae: It is associated with Lema coromandeliana Fabr., L. maheensis Jac., L. praestua Fabr., L. terminata Lacord. and L. rufotestacea Clark.

c) Ecological niche: It feeds on the marginal area of a leaf leaving thread like filaments, whereas Lema coromandeliana, L. maheensis, L. praestua, L. terminata and L. rufotestacea make holes in the middle part of the leaf. (For figures of feeding pattern see Kalaichelvan et al., 2003.)

DISCUSSION

That in Criocerinae larval instars carry a faecal load or shield, and that pupation occurs within a cocoon, have also been described and recorded by Sengupta and Behura (1957), Srivastava and Bhagat (1966), and Visalakshi and Nair (1978). Pupation within a cocoon has been mentioned by Cox (1996, 1998). White (1993) has pointed out cocoon formation in North American species of Lema. Visalakshi and Nair (1978) have recorded formation of cocoon by hardening of a frothy white material exuding from the mouth of the last instar larva, as observed in the present project too. That in captivity pupation occurs between leaves of the host plant has been observed by Sengupta and Behura (1957) in Lema praestua, an observation repeated in the present study in another species of Lema. In the present study it has been noted that the adult, after eclosion from the pupal skin, remains within the cocoon for some time, so that the adult leaving the cocoon, is fully pigmented. This situation has been recorded also for North American species of Lema by White (1993).

REFERENCES


NEW RECORD

Asteridiella pygei Hansf. var. microspora Hosag., a new record from Southern India

V.B. Hosagoudar and H. Biju

Microbiology Division, Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram, Kerala 695 562, India

During a survey of the foliicolous fungi in the Silent Valley National Park, Palakkad district of Kerala State, we collected a specimen of Pygeum wightianum Blume (Rosaceae) with infection. Microscopic examination of the material revealed that it is a hitherto unrecorded member of the family Meliolaceae from southern India and hence the note.

Figure 1. Asteridiella pygei Hansf. var. microspora Hosag.

© Zoo Outreach Organisation; www.zoosprint.org
Manuscript 1279; Received 01 November 2004; Revised received 21 March 2005; Finally accepted 12 April 2005; Date of publication 21 May 2005

June 2005 | ISSN 0971-6378
Asteridiella pygei Hansf. var. microspora Hosag., Meliolales of India, p. 100, 1996 (Fig. 1)

Material examined: 13.xii.2003, Sairandhri, Silent Valley, Palakkad, Kerala, on leaves of Pygeum wightianum Blume (Rosaceae), coll. V.B. Hosagoudar, HCIO, TBGT

Colonies few, hypophyllous, dense, thinly velvety, up to 3mm in diameter. Hyphae straight, substraight, flexuous to crooked, branching alternate, opposite to irregular at acute to wide angles, loosely to rarely closely reticulate, cells 24-32 x 5-7µm. Appressoria alternate, straight to curved, antrorse, subantrorse to often recurved, 16-28µm long; stalk cells cylindrical to cuneate, 3-11µm long; head cells ovate, globose, oblong, clavate, straight to curved, entire, angular to sublobate to lobate, 12-16 x 9-11µm. Phialides mixed with appressoria, scattered, conoid to ampulliform, 14-21 x 6-8µm.

Perithecia scattered, globose, up to 160µm in diameter; perithecial wall cells numerous, conoid, larviform, curved, broadly rounded to attenuated at the apex, up to 20µm long; ascospores ellipsoidal, mostly curved, rarely straight, 3-septate, constricted at the septa, 35-39 x 14-16µm.

This taxon was described on Rubus sp. collected from Sikkim by J.N. Kapoor (Hosagoudar, 1996) and is known here from the southern Western Ghats on Pygeum wightianum Blume. Hence, it is evidenced that this fungus has a host range and also occurs both in the Himalayan region and in the Western Ghats, as in the case of Schiffnerula camelliae (Sydow, Sydow & Butler) Hughes (Hosagoudar et al., 1999).

Acknowledgements
We thank Director, TBGRI, Palode for facilities.

Body Condition Evaluation and Its Relationship to Parasitism in Captive Deer (Axis axis)


Department of Medicine, Nagpur Veterinary College, Nagpur, Maharashtra 440006, India

Health condition of large animals can be assessed by observing their body condition. A criteria suggested by Riney (1960) for evaluating body condition of some ungulates was adopted for monitoring the appearance of captive Spotted Deer. Body condition evaluation (BCE) involves judging the physical condition of the animals based on the visual examination of the degree of protuberance of bony processes on the body surface. BCE is generally expressed in the form of indices referred to as body condition index (BCI). The method is made more quantitative by giving scores for different body parts to obtain a value. The index is employed to compare the mean body condition of two populations of a species, amongst different individuals of any particular age and sex of a population, and between populations.

Endoparasites play an important role in the health status of the wild animals. The effects of parasites on domestic animals are well studied. It is largely assumed that the same holds true for free ranging wild animals, although the etiology of parasites in the wild is likely to be much different. The effect of parasitism on the overall health of a population was assessed in the present investigation by evaluating the body condition of Spotted Deer (Axis axis) in captivity and in free ranges as well.

Seventeen captive Spotted Deers were selected for evaluating the health status of which seven were found to have parasitic infestation and 10 were non-infected. Body condition evaluation revealed that 4/7 (57.14%) were in good condition and 3/7 (42.86%) were rated as fair in body condition. Observational studies on the effect of diseases on affected individuals are possible only in some instances. Observational studies regarding body condition score of non-infected Spotted Deer revealed 8/10 (80%) as good and 2/10 (20%) as fair.

Reference

Table 1. Health status of infected and non infected Spotted Deer in captivity.

<table>
<thead>
<tr>
<th>Rearing type</th>
<th>Good #</th>
<th>Good %</th>
<th>Fair #</th>
<th>Fair %</th>
<th>Poor #</th>
<th>Poor %</th>
<th>Total #</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infected</td>
<td>4</td>
<td>57.14</td>
<td>3</td>
<td>42.86</td>
<td>7</td>
<td>41.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-infected</td>
<td>8</td>
<td>80</td>
<td>2</td>
<td>20</td>
<td>10</td>
<td>58.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>70.59</td>
<td>5</td>
<td>29.41</td>
<td>17</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Zoo Outreach Organisation; www.zoosprint.org
Manuscript 1131; Received 13 Mar 2004; Finally accepted 01 March 2005; Date of publication 21 May 2005