Endoparasitic Infection in Indian House Crow (Corvus splendens)
Prathipa, A.1, S. Gomathinayagam2, K. Senthilkumar3, M. Palanivelrajan4, C. Niranjana5 and M.G. Jayanthanagaraj6

Abstract
The main objectives of the present study was to identify and determine the prevalence of endoparasites of common crow (Corvus splendens) in Chennai City, Tamil Nadu State, India. Hundred droppings of common crow (Corvus splendens) in and around were collected in 10% formalin in sterile containers and examined for endoparasites. Oocysts of Isospora sp. and Sarcocystis sp. were found in 24 percent and 20 percent of samples, respectively. Eggs of Cestode Hymenolepis sp. were found in 12% of the samples, Capillaria sp. eggs were found in 19% of the samples and mixed infection of these were found in 17% of the samples. Sarcocystis and Hymenolepis diminuta are of zoonotic importance and their presence in the droppings of the crow, indicates the possible role of crow in transmitting / spreading of human endoparasites.

Introduction
The common crow belonging to the family Corvidae and the Genus Corvus is found almost throughout the world, having a widespread distribution in Southern Asia. Crow the most intelligent and opportunistic bird, are omnivorous in nature, feeding largely on refuse around human habitations, small reptiles, insects and other small invertebrates, eggs, nestlings, grain and fruits. They can survive on nearly anything that is edible. They are observed to eat sand after feeding on carcass. Crows may become a nuisance when they gather in huge communal roosts. However, they are beneficial to control insects and small rodents.

Keeping this in view, a study was undertaken to detect the presence of endoparasites in crow population.

Materials and methods
Hundred samples of droppings freshly voided by free-ranging crows, in and around Chennai were collected in sterile containers containing 10% formalin. They were processed by centrifugal sedimentation and floatation technique for endoparasitic examination (Soulsby, 1982)

Results
Examination of droppings revealed presence of oocysts of Isospora sp. (Plate 1) in 24 samples (24%), Sarcocystis sp. (Plate 2) in 20 samples (20%), eggs of Hymenolepis diminuta (Plate 3) in 12 samples (12%), eggs of Capillaria (Plate 4) in 19 samples (19%) and mixed infections of these were found in 17 samples (17%). The percentage of endoparasitic infection in Indian house crows is given in Figure 1.

Discussion
Encountering of Capillariosis in crows was in agreement with Hoefer (1997) who stated that eggs of Capillaria sp. could be identified by the presence of the characteristic bipolar plugs and thick shell. Urquhart et al. (1996) stated that heavy infections of Capillaria would cause diphtheritic inflammation leading to inappetence, emaciation and diarrhea.

1.3.4Assistant Professors, Department of Wildlife Science, Madras Veterinary College, TANUVAS, Chennai
2Professor, Department of Veterinary Parasitology, Madras Veterinary College, TANUVAS, Chennai
5Assistant Professor, Directorate of Research, TANUVAS, Madhavaram Milk Colony, Chennai
6Professor and Head, Department of Wildlife Science, Madras Veterinary College, TANUVAS, Chennai.
Email: prathipa77@gmail.com (Corresponding Author)
Detection of coccidial infection in this study is in agreement with Cooper (1996) who also reported on the occurrence of coccidiosis in three Indian house crows. Most coccidians live within the host without producing any pathological condition and weight loss is often associated with chronic diarrhea and emaciation [Burr (1987) & Rosskopf and Woerpel (1996)]. observed emaciation and diarrhoea in coccidiosis affected bird.

Presence of sporocyst of Sarcocystis sp. and eggs of Hymenolepis diminuta in the droppings of crow is an important indicator as to how crows could play a major role in spread of zoonotic disease. Fayer (2004) stated that Sarcocystis sp are intracellular protozoan parasites with a requisite to host life-cycle based on prey-predator host relationship. Hymenolepis is primarily a rodent parasite for which arthropods act as intermediate host. The coprophagic arthropods ingest the egg where it gets developed into cystercoids. Rodents which are the definitive host, ingest the arthropods and get infected. Humans can get accidentally infected through the same mechanism. Crows prey upon rats and could have picked up the infection from the rats. Marangi et.al., (2003) reported a case of Hymenolepis diminuta infection in an Italian child affected by tuberous sclerosis. Findings of Hymenolepis diminuta egg in the droppings of crows implies that crow could also play a role in transmission of this endoparasite.

Being an ubiquitous scavenger, the Indian crow play a major role in dissemination of pathogens over comparatively short distances by carrying portions of carcasses from place to place and also through their droppings. Though endoparasitic infection of crows was identified, treatment was not possible due to difficulties encountered in the free – ranging systems. The study reported in this paper involved only to specific areas of Chennai and however this will prompt further research in this scavenging creature. More work has to be done on as to how they act as host for various parasites and the actual role they play in spread of zoonotic diseases.

Acknowledgement
Authors wish to acknowledge the facilities provided by The Dean, Faculty of Basic Sciences, Madras Veterinary College and The Dean, Madras Veterinary College, Vepery, Chennai - 600 007.

References